Email updates

Keep up to date with the latest news and content from Retrovirology and BioMed Central.

This article is part of the supplement: Frontiers of Retrovirology 2011

Open Access Poster presentation

Preclinical test of a lentivirus-mediated RNAi gene therapy against HIV-AIDS in the humanized mouse model

Mireille Centlivre1*, Nicolas Legrand23, Ying-Poi Liu1, Karin J von Eíje1, Kees Weijer2, Bianca Blom2, Hergen Spits23 and Ben Berkhout1

  • * Corresponding author: Mireille Centlivre

Author Affiliations

1 Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Amsterdam, The Netherlands

2 Department of Cell Biology & Histology, Center for Immunology of Amsterdam (CIA), AMC-UvA, Amsterdam, The Netherlands

3 AIMM Therapeutics, AMC-UvA, Amsterdam, The Netherlands

For all author emails, please log on.

Retrovirology 2011, 8(Suppl 2):P9  doi:10.1186/1742-4690-8-S2-P9

The electronic version of this article is the complete one and can be found online at: http://www.retrovirology.com/content/8/S2/P9


Published:3 October 2011

© 2011 Centlivre et al; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background

HIV-1 is still a major public health problem and one of the priorities of the World Health Organization. The development of HAART against HIV was a considerable advance for infected individuals, but this life-long treatment does only block virus replication, and no viral eradication is obtained. Furthermore, HAART may exhibit long-term toxicity and may eventually lead to the emergence of drug-resistant viral variants. We explore a new durable therapeutic intervention based on a gene therapy that induces RNA interference (RNAi) against HIV-1. In this pre-clinical research setting, "humanized" experimental mouse models are of interest considering the relative ease of handling and relatively low cost as compared to non-human primates.

Methods

We have developed an RNAi gene therapy based on the transduction of human hematopoietic progenitor cells (HPC) with lentiviral vectors encoding short-hairpin RNAs to induce silencing of HIV genes. We have tested the efficacy and safety of such a shRNA-based gene therapy strategy in the "Human Immune System" (HIS) BALB/c Rag2-/-IL-2Rγc-/- mouse model, which are reconstituted with human HPC that were first transduced ex vivo with a lentiviral vector expressing the antiviral shRNAs.

Results

We observed a normal in vivo development of the human immune system with a good recovery of human shRNA+cells for the candidate shPol47, shPol1 and shRT5 inhibitors. However, the in vivo recovery of human shGag5-transduced cells was extremely poor, suggesting a negative impact of this specific shRNA on the development of the human immune system. When these 4 shRNAs were combined in a single lentiviral vector (R4), we observed a similar negative off-target effect due to the shGag5 component. Upon removal of shGag5 as in vector R3, transduction of human HPC results in a normal differentiation of the human immune system, highlighting the in vivo safety of this candidate R3 gene therapy vector for a clinical trial. Moreover, human HPC expressing the antiviral shNef generate human CD4+T cells with the ability to resist HIV-1 replication in a sequence specific manner.

Conclusion

Overall, these results underscore the usefulness of the HIS (BALB-Rag/γ) mouse model for testing the safety and efficacy of durable anti-HIV gene therapy approaches. In this model, human HPC expressing anti-HIV-1 shRNA give rise to multi-lineage reconstitution of the immune system in vivo and generate CD4+ T cells that are not susceptible for HIV-1 replication.