Email updates

Keep up to date with the latest news and content from Retrovirology and BioMed Central.

This article is part of the supplement: 15th International Conference on Human Retroviruses: HTLV and Related Viruses

Open Access Meeting abstract

Analysis of the HTLV-1 Gag assembly pathway by biophysical fluorescence

Keir H Fogarty12, Yan Chen2, Iwen F Grigsby1, Patrick J Macdonald2, Elizabeth M Smith2, Jolene L Johnson2, Jonathan M Rawson1, Joachim D Mueller12 and Louis M Mansky1*

Author Affiliations

1 Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA

2 School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455 USA

For all author emails, please log on.

Retrovirology 2011, 8(Suppl 1):A206  doi:10.1186/1742-4690-8-S1-A206

The electronic version of this article is the complete one and can be found online at: http://www.retrovirology.com/content/8/S1/A206


Published:6 June 2011

© 2011 Fogarty et al; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Meeting abstract

Much of the mechanistic details for how HTLV-1 Gag orchestrates virus particle assembly and release are poorly understood. Here, we monitored the behavior of both membrane-bound and cytoplasmic HTLV-1 Gag in real-time in living cells incubated on a fluorescence microscope. We used both fluorescence fluctuation spectroscopy (FFS, conventional and z-scan) and fluorescence imaging (epi-illumination, total internal reflection fluorescence (TIRF)) to investigate the relationship between cytoplasmic and membrane bound Gag, using a Gag-YFP model system. FFS determines the brightness, mobility, and concentration (conventional) and localization (z-scan) of fluorescent particles from the intensity bursts generated by individual particles passing through a small observation volume, which yields information about protein stoichiometry, interactions, transport, and distribution. By coupling the single-molecule FFS technique with imaging techniques capable of monitoring Gag localization (epi-illumination) and membrane-specific localization (TIRF), we achieved new insights into the earliest events in HTLV-1 Gag assembly, and differences to HIV-1 Gag. We found that HTLV-1 Gag membrane-targeting occurred at all cytoplasmic concentrations measured, while appreciable membrane-targeting for HIV-1 required Gag cytoplasmic concentration to exceed a threshold. In addition, z-scan FFS revealed that a substantial population of membrane-bound HTLV-1 Gag exists not as puncta, but as a diffuse, low-order, dynamic “sheet.” These observations, coupled with previous observations of cytoplasmic Gag interactions and mobility, point to differences in membrane targeting of HTLV-1 and HIV-1 Gag. In summary, the suite of biophysical fluorescence techniques, applied HTLV-1 Gag, provide unparalleled information concerning HTLV-1 Gag trafficking processes in vivo, elucidating assembly pathway differences between HTLV-1 and other retroviruses.